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Abstract

Sensor validation is a primary component of the real-
time and post-test health management systems being
developed for rocket engines. Analytical redundancy
models are being used to estimate critical parameters.
These estimates, when compared to sensed values, provide
information on the health of the sensors. Complex models
are required to describe highly nonlinear systems. In
addition, quantitative information on the validity of the
model inputs is needed to differentiate between input and
output sensor failures in the event of large deviations
between the actual and model predicted values. The model
input validity information provides confidence in the use of
the model estimates for health monitoring decisions.
Radial Basis Function Neural Networks (RBFNNs) are

well-suited for nonlinear function approximation. -

Furthermore, internal network parameters and the training
data used to compute these parameters can be used to
indicate the validity of the model inputs. The prediction
and model input validity capabilities of RBFNNs were
demonstrated on Space Shuttle Main Engine parameters
during the highly nonlinear startup transient. RBFNNs
were used to model the Oxidizer Preburner chamber
pressure, a parameter which has no hardware redundancy,
and the High Pressure Oxidizer Turbine discharge
temperature, a redlined parameter. Good prediction
accuracy was achieved over a large number of test firings.
The model input validity indicators responded to simulated
hard and soft input sensor failures and correctly identified
the failed input parameters.

I. Introduction

Rocket engine system reliability could be improved by
systems which validate all sensors used for control, redlme
limit monitoring and advanced anomaly detection.'?
Current efforts to develop an automated sensor validation
system for the Space Shuttle Main Engine (SSME) is based

on analytical redundancy techniques in which actual sensor )

data are compared with model-predicted values. Bayesian
probability theory is used to combine the information from
a network of sensors and models into a single solution
describing the health of each sensor under consideration.
The models used consisted of first and third order binary_
empirical correlations which can adequately approximate a
large number of parameters during mainstage operation of
the SSME. However, more complex models, such as
neural networks, are required during the highly nonlinear
startup transient.!

Multiple input regression techniques and feedforward
neural networks trained with the backpropagation algorithm
have been used to approximate parameters during the
highly nonlinear startup transient.'* Good prediction
accuracy has been achieved, but these techniques do not
provide an estimate of the validity of the model inputs.
Therefore, a deviation between actual and predicted values
could be due to a model input sensor failure or a sensor
failure of the parameter being modeled. Radial Basis
Function Neural Networks (RBFNNs) are well-suited for
nonlinear function approximation,’ and have internal
network parameters which can be directly used as
indicators of input validity.’ For example, large prediction
error accompanied by high input validity indicates that the
output sensor has failed. In this case, the predicted value
can be used for continued process monitoring. In addition.
RBFNNs are faster and easier to train than feedforward
neural networks trained with backpropagation and are not
prone to getting stuck in local minima.*’

In this investigation, RBFNNs were used to model the

- Oxidizer Preburner (OPB) chamber pressure, a parameter

which does not have hardware redundancy. and the High
Pressure Oxidizer Turbine (HPOT) discharge temperature,
a redlined parameter. during the SSME startup transient.
The training set consisted of data from the first six seconds
of eight nominal test firings. The trained models were
validated using data from twenty-seven nominal test firings.
Data for all thirty-five test firings were collected on the
same test stand. An SSME configuration consists of



several line replaceable units. including low pressure and
high pressure fuel and oxidizer turbopumps, a main
combustion chamber, a nozzle and a controller. These
thirty-five training and validation test firings represent a
large number of combinations of line replaceable units;
because SSME components are frequently interchanged,
models which are insensitive to hardware substitutions are
desired.

The prediction performance on the training and
validation test firings was measured by the Normalized
Root Mean Square (NRMS) error. Simulated drifts and
hard sensor failures were injected into the nominal test
firings. Scenarios involving one and two input sensor
failures were considered. Two types of model input
validity indicators were used to quantify the validity of the
inputs used to generate the prediction and to isolate one or
more failed inputs. The input validity information can be
provided to the health management system in order to
increase the confidence and reliability of decisions made
based on the model output. High validity indicates that the
prediction can be used to make health monitoring decisions.
Low validity indicates that the information used to make
the prediction is invalid due to an input sensor failure, or
possibly an engine anomaly. In this case, large deviations
between actual and predicted values are not due to a sensor
failure in the parameter being modeled. Models developed
using RBENNSs could be used to provide startup sensor
validation capability to the system currently under develop-
ment.'

I1. RBFNN Background

RBFNNs have been shown to be universal function
approximators.”® RBFNN theory is extensively described
in the literature.** The specific implementation used in this
investigation is summarized below.

As shown in Figure |, RBFNNs consist of a input
layer for distribution of the input vector, a single hidden
layer of processing units (basis functions) and an output
summation unit. The connections between the hidden and
output layers are weighted. An input vector x with
components 1 to n is presented to each processing unit. A
processing unit has a centroid vector ¢; which determines
the location of the center of the radial basis function and a
variance o which determines the width of the function.
The radial basis function, ¢, used in this investigation is
Gaussian and is applied to the Euclidean distance as
follows:

¢<x,i)=exp(-_“’_‘ifL“) (1)
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The output of each unit is then weighted and summed by
the output summation unit to obtain the network output or

prediction. "The weights are determined using matrix
inversion techniques.’

In addition to the weights, the RBFNN parameters which
need to be established are the number of centroids. and
their locations and variances. The locations and widths of
the radial basis functions depend on the data being
presented to the network. A variety of algorithms can be
used including k-means clustering and learning veclor
quantization. A single-pass clustering algorithm was used
in this investigation." When applying this algorithm, all
patterns are first randomized. The first vector is then
assigned to a cluster. All other vectors are sequentially
examined to see if they fall within a predetermined distance
threshold of the cluster center. The cluster center is
recomputed each time a vector is assigned to it. Once all
vectors have been examined for the current cluster, the first
vector which has not been assigned becomes the next
cluster center. Processing continues until all vectors have
been assigned. With single-pass clustering, the number of
centroids is not predetermined. Finally, cluster variances
are computed from the data using a neighborhood of p-
nearest centroids of surrounding clusters.” The variance of
a centroid is taken to be the mean of the square Euclidean
distance from the centroid of that cluster to the p-nearest
centroids. This method of computing variances helps to
improve the interpolation capability of the RBFNN and the
smoothness of the fitted function.

The prediction performance of the trained network was

assessed by computing the NRMS error, which is
calculated as follows:

(2)

where §, is the predicted value, y, is the actual value, and
m is the number of time slices in the start profile. The
NRMS error is indicative of the overall average accuracy
of the prediction.

111. Model Input Validity Indicators

Model input validity indicators can be extracted from
internal RBFNN parameters and from the training data used
to compute these parameters in a straightforward manner.
Two types of model input validity indicators are
considered. These are the maximum centroid activation
and the confidence values. The maximum centroid
activation is determined from the activations of the
centroids which are automatically computed when the
RBFNN is used for prediction. The confidence values are
based directly on the populations used to determine the
centroids.



When an input is applied to the trained RBFNN, each
centroid produces an output or activation. Since each
centroid was determined from a portion of the training data,
the activation indicates how close the input vector is to the
training data represented by that centroid. Two factors
combine to generate the activation: the distance between
the input vector and the centroid, and the centroid variance.
A low activation for a given node indicates that the input
vector is not close to (he training data used to establish that
centroid. A high activation indicates that the input vector
is similar to the training data represented by that centroid.
If all centroids have low activations for a given input
vector, then that input vector is not close to any of the
training data, and the value predicted by the model is an
extrapolation. If at least one activation is high, then the
given input vector falls within the realm of experience of
the network and the output does not represent an extrapola-
tion. Therefore, the maximum centroid activation over all
centroids provides a good indication of the usefulness of
the output produced by the current input vector.® Figure
2(a) shows the centroid activations for an input vector
when all of the individual inputs are nominal, and Figure
2(b) shows the centroid activations when one input has
been failed. There are 49 centroids in the example shown.
As can be seen, there are no large activations in the event
of an input sensor failure. The Gaussian radial basis
function (Eq. 1) ensures that all activations fall in the
interval (0,1]. The maximum centroid activation assigned
to the input vector in Figure 2(a) is close to one, while the
maximum centroid activation assigned to the input vector
in Figure 2(b) is just slightly greater than zero.

The confidence values rely on the computation of the
actual standard deviation of a centroid in all dimensions,
and therefore provide information to isolate faulty inputs.
To justify this statistical computation, all centroids which
have a population smaller than four are discarded. For all
remaining centroids, the standard deviation in each
dimension is computed from that centroid’s population. A
generic fuzzy membership function is established to
indicate if an incoming vector belongs to a given
population. Confidence values are computed for each
dimension as follows. If an input is within a certain
number of standard deviations of the mean for the
dimension, the confidence for that dimension is assigned a
value of 1. The value for the specific number of standard
deviations represents the 99.5 per cent confidence interval,
and varies from centroid to centroid based on the size of
the population used to establish the centroid. For example,
the number of standard deviations is 3.169 for a centroid
with a population of thirty and 2.854 for a centroid with a
population of twenty.!" The confidence value gradually
decreases from one at the number of standard deviations
represented by the 99.5 per cent confidence interval to zero
at twice that number of standard deviations. When an
unknown input vector is presented to the RBFNN,

confidence values for each centroid are examined to
identify centroids with high confidence values in all
dimensions. The total confidence value assigned to a
centroid for a given input vector is the sum of the
individual dimensional confidence values. The maximum
total confidence observed over all centroids is the total
confidence value assigned to the current input vector.
Since several centroids may have identical total confidence
values, the set of confidence values of the centroid which
has the largest minimum dimensional confidence value is
selected for the current input vector. For example, in an
RBFNN with four inputs, [.6, .6, 1, 1] and [4, .8, 1, 1]
both have a total confidence of 3.2. The first set of
confidence values would be selected for the current input
vector because the second set contains a smaller individual
dimensional confidence than the first set.

The confidence values can be displayed in a variety of
ways. The information provided by the total confidence is
similar to that provided by the maximum centroid
activation; it provides an overall assessment of the
closeness of the input vector to the training data used to
establish the centroids. The individual confidence values
for each dimension provide information as to which inputs
are causing a low total confidence. With individual
confidence values, one can distinguish between small
decreases in confidence for several input parameters and a
large decrease in confidence for one input. This capability
may prove useful in the detection of engine failures other
than sensor failures.

1V. Application to SSME Data

The methodology presented in this paper could be used to

model any SSME or other system parameter which has
sufficient analytical redundancy in the available
instrumentation suite. Sufficient analytical redundancy can
be described in terms of modeling error acceptable to the
user. Two SSME parameters were selected in this
investigation: the OPB chamber pressure, a parameter
which has no hardware redundancy. and the HPOT
discharge temperature, a redlined parameter. These
parameters are both on the oxidizer side of the SSME
which is more sparsely instrumented than the fuel side.
The HPOT discharge temperature experiences very large
nominal test-to-test variability, while the OPB chamber
pressure is more repeatable from test-to-test. Several issues
were addressed in the application of RBFNNs to SSME
data. These include the selection of model inputs, the
selection of training and validation test firings. the
determination of an appropriate distance threshold for the
single-pass clustering algorithm. and the simulation of input
sensor failures.

The engine measurements in the model input vector were
chosen because of their physical interdependence with the
parameter being modeled. Four inputs were selected for



the OPB chamber pressure and five inputs were selected
for the HPOT discharge temperature: the parameters are
given in Table 1. Prior to presentation to the RBFNN
training algorithm, all inputs and the output were
normalized to fall within the range [-0.5 0.5]. The
minimum and maximum values used for normalization
were determined from all training and validation test
firings.

A total of thirty-five test firings was used to train and
validate the RBFNN models. In order to provide the
networks with sufficient examples of the range of nominal
behavior experienced by the SSME, eight test firings were
used for training. The test firings selected for training
were B1050, B1055, B1056, B1070, B1073, B1079, B1081,
and B1084. Bl indicates the test stand at Stennis Space
Center on which the firings were conducted, and the Jast
three digits indicate the test firing number. These firings
represent the range of nominal behavior experienced by the
inputs and outputs listed in Table |. The twenty-seven test
firings used for validation consisted of all test firings
between B1049 and B 1086, inclusive, which were not used
for training and which had a complete six-second start
transient.

The training test firings were used to generate training
vectors for the RBFNNs; these training vectors were used
for data clustering and RBFNN weight determination. Data
from 0.0 to 5.96 seconds were used; the SSME sampling
interval of 40 msec resulted in 149 patterns per test firing.
Eight training test firings generated 1192 initial training
patterns. Prior to determination of the RBFNN weights,
the single-pass clustering algorithm was applied to the
training patterns to compute the cluster center locations.
As indicated in the previous section, cluster centers with a
population less than four were discarded. The threshold
distance used in the single-pass clustering algorithm was
adjusted until 90 per cent or more of the vectors from each
test firing contributed to the final cluster centers. The
distance values were dependent on the parameter being
modeled and were determined by trial and error. In each
case, a smaller threshold than the one selected resulted in
too many vectors being discarded, and a larger threshold
resulted in too few cluster centers.

After training, The NRMS error was computed for all
training and validation test firings. In addition, the
maximum centroid activation, the individual dimensional
confidence values, and the total confidence were
determined for the training and validation test firings.
None of these test firings contained input or output sensor
failures. Examples of model input validity for nominal test
firings provided a baseline for comparison with model
input validity indicators in the presence of input sensor
failures.

Various input sensor failure scenarios were constructed

to illustrate the utility of the model input validity
indicators. Hard sensor failures were simulated by freezing
a sensor valuc at the sensor failure initiation time: the
sensor value remained constant for the remainder of the
start profile. Soft sensor failures were simulated by
injecting a drift of constant magnitude into an input
parameter at the sensor failure initiation time. Figures 3(a)
and 3(b) show examples of simulated hard and drift sensor
failures of the Preburner Boost Pump (PBP) discharge
pressure on validation test firing B1067. Both single and
multiple input sensor failures were considered. The case
numbers, along with the model used. the failed input
sensor(s), and the sensor failure type and initiation time are
presented in Table 2. Cases [-3 explore the impact of
single input sensor failures. Case 4 considers two input
sensor failures.

V. Results and Discussion

Data from eight nominal test firings were used to train
RBFNNs to model two parameters. the OPB chamber
pressure and the HPOT discharge temperature, during the
SSME startup transient. The performance of the trained
networks was assessed using twenty-seven validation
firings. Nominal inputs and simulated input sensor failures
were considered. All nominal and simulated input sensor
failure examples depicted are from validation firing B1067.

The single-pass clustering algorithm generated the
centroids used by the RBFNNs. All centroids were
computed from a population of at least four training
patterns. The distance thresholds selected for use in the
single-pass clustering algorithm resulted in 49 centroids for
the OPB chamber pressure model and 40 centroids for the
HPOT discharge temperature model. The centroids formed
by the single-pass clustering, together with the variances
and weights between the hidden and output units, give the
RBFENN its prediction capability.

The NRMS errors computed for the training and validation
test firings indicate that each model provides good
prediction of the specified parameter over the entire startup
profile and for a variety of engine configurations. The
OPB chamber pressure model NRMS errors ranged from
.003 to .017 on the validation test firings, with a mean
value of .0094. The HPOT discharge temperature model
NRMS errors ranged from .011 to .063 on the validation
test firings, with a mean of .028. The OPB chamber
pressure model performed better than the HPOT discharge
temperature model on the training and validation firings.
This can be attributed to several factors. The HPOT
discharge temperature exhibits more nominal variability
during the six second start transient than the OPB chamber
pressure. This variability is only partially accounted for by
the model input set. Due to the harsh environment on the
oxidizer side of the SSME, additional sensor information,



such as the high pressure oxidizer pump shaft speed, is not
available. Furthermore, temperature sensors are much
slower to respond than pressure and shaft speed sensors,
making sensor dynamics an important component of the
modeling process. An example of the prediction capability
for both models is presented in Figures 4(a) and d(b) for
validation test firing B1067; actual and RBFNN predicted
values are shown. These figures are representative of the
performance of the two models on the nominal validation
firings. NRMS errors for the OPB chamber pressure and
HPOT discharge temperature models for test B1067 were
.009 and .028, respectively.

In addition to the prediction capability of the RBFNNs,
internal network parameters and information used to derive
these parameters were used to validate the inputs being
presented to the network. Figures 5 and 6 show the
maximum centroid activation and the total confidence
indicator for the OPB chamber pressure and HPOT
discharge temperature models on nominal test firing,
B1067. Figures 5(a) and 6(a) show the maximum centroid
activations as a function of time. Because the centroids
established by the single-pass clustering algorithm are well-
distributed over the startup profile, the values for maximum
activation are high (> 0.75) for all thirty-five nominal
firings throughout the start transient. Figures 5(b) and 6(b)
show the total confidence value for the input vectors
presented to the RBENN; the upper limit on the total
confidence is a multiple of the number of input values.
The total confidence indicates how consistent the entire
input vector is with the experience base encoded by the
model, and is high throughout the start transient for all
thirty-five nominal test firings.

The maximum centroid activation and confidence
metrics provided clear sensor failure indications when
tested against the scenarios listed in Table 2. Incase 1, a
hard failure of the Preburner Boost Pump (PBP) discharge
pressure was introduced at 3.0 seconds. Figures 7(a) and
7(b) show the increase in error between the RBFNN
predicted and the actual sensed values for the OPB
chamber pressure. Figures 8(a) and 8(b) show a dropoff in
maximum centroid activation and in the total confidence.
This indicates that the input vectors encountered after 3.0
seconds are invalid. As can be seen, both of these metrics
provide similar information on the overall validity of the
input vectors.  Furthermore, an examination of the
individual confidence values identifies the PBP discharge
pressure as the failed input parameter. Thus, the model
input validity indicators show that the deviation between
actual and predicted values is not due to a sensor failure of
the parameter being modeled. Upon isolation, the failed
PBP discharge pressure reading would no longer be used
to make health monitoring decisions. Use of the OPB
chamber pressure RBENN model could continue if a
redundant channel or synthesized value were available to
replace the failed input sensor reading.

The RBFNN model input validity indicators were also
applied to an input failure in the HPOT discharge
temperature model. Sensor failure case 2 investigated the
impact of a hard sensor failure of the OPB chamber
pressure on the HPOT discharge temperature model. The
response of the RBFNN prediction and the model input
validity indicators were similar to those experienced in case
1. The OPB chamber pressure was disqualified shortly
after the initiation of the sensor failure.

Sensor failure case 3 examined a drift in the Fuel
Preburner (FPB) chamber pressure for the OPB chamber
pressure model. Since the amount of time within the start
profile is less than six seconds, the drift condition used was
large, 100 psia/second, and was initiated early in the start
profile, start+1.0 seconds. Small drifts or drifts occurring
late in the start profile would not exhibit much effect on
the prediction of the RBFNN and may not deviate
significantly from the experience base used to construct the
models. For the drift considered, a dropoff in all model
input validity indicators was observed, but the dropoff was
more gradual due to the nature of the input sensor failure.
The increase in the deviation between the actual and
predicted values for the modeled parameter could therefore
be attributed to an input sensor failure. The individual
confidence value for the FPB chamber pressure fell to zero,
thus correctly identifying this parameter as the failed input.

Finally, sensor failure case 4 considered multiple input
sensor failures. This case combines a drift and a hard
failure. Prediction errors are similar to those observed in
case 1. Figures 9(a) and 9(b) illustrate that the model input
vectors become invalid shortly after 3.0 seconds. Figures
10(a) - 10(d) show the individual confidence values. The
input numbers one through four refer to the model inputs
in the order in which they are listed in Table 1. Soon after
initiating the hard failure of the PBP discharge temperature,
Figure 10(c) indicates zero confidence in this parameter.
Furthermore, as the deviation between the actual and
simulated input sensor failure values for the drifting FPB
chamber pressure increase, the confidence for the FPB
chamber pressure deteriorates. Monitoring of individual
confidence values can be used to detect and isolate multiple
sensor failures. Due to the small number of inputs,
however, it may be difficult to distinguish between muitiple
input sensor failures and engine anomalies. The nature and
timing of the multiple sensor failures can also affect the
ability of the network to correctly identify the failed
instrumentation. 1f, for example, two of four inputs were
to fail hard (i.e., freeze at their current values) at exactly
the same time. the network would not conclusively identify
the correct two sensors as failed since both pairs of inputs
are within the experience base of the network. The model
input validity indicators, maximum centroid activation and
total confidence, would clearly indicate. however, that the
combination of inputs is invalid.



The model input validity indicator appropriate for a
given application depends on the information required and
on computing considerations. The centroid activations are
computed automatically in generating the RBFNN
prediction. The maximum of these values for a given input
vector is a good indicator of the overall validity of the
input vector. Since a low maximum centroid activation
indicates that one or several of the individual inputs used
to generate the predicted value are not valid, the output of
the RBFNN model should not be used for decision-making.
The total confidence provides a similar indication of overall
input validity as the maximum centroid activation.
Furthermore. in the case of single and some multiple input
sensor failures, the individual confidence values provide a
clear indication of which input sensor has failed. Since the
confidence values are based on the populations used to
compute the centroids and not on values used directly for
the RBENN prediction. however, their use represents
additional computational overhead.

VI. Concluding Remarks

Radial Basis Function Neural Networks (RBFNNs) -

have been used to efficiently and accurately model
parameters responding to highly nonlinear conditions.
Although traditional neural network and regression
techniques can provide similar prediction capabilities, they
do not provide an estimate of the validity of the inputs
used to make the prediction. SSME data were used to
demonstrate the ability of the RBFNNs to. predict critical
parameters and to quantify the validity of the model inputs.
Two types of model input validity indicators, the maximum
centroid activation and the confidence values, provided
clear indications that one or more input sensor failures had
occurred by recognizing inconsistent relationships among
highly correlated input parameters. In addition, the
individual .confidence values correctly identified which
inputs had failed.

The model validity indicators provide a quantitative
means to determine if the model prediction should be used
to make health monitoring decisions. A laige deviation
between actual and model predicted values accompanied by
high model input validity is indicative of a sensor failure in
the parameter being modeled. Therefore, this sensor should
not be used for control, redline limit monitoring or
advanced anomaly detection. A redundant channel or the
RBENN predicted value can be used in place of the failed
sensor value. A large deviation between actual and model
predicted values accompanied by low model input validity
indicates an input sensor failure. Use of the RBFNN
model output could continue if a redundant channel or
synthesized value were available to replace the failed input
sensor reading.

The prediction and model input validity capabilities of
RBFNNs can be used as part of an overall sensor

validation system. Such a system will enhance rocket
engine safety and reliability by ensuring that all sensors
used to make control, redline limit monitoring and
advanced anomaly detection decisions have been validated.
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mode| HPOT Discharge OPB Chamber
input Temperature Pressure

OPOV Position X X

FPB Chamber Pressure : X X

PBP Discharge Pressure X

MCC Pressure X
PBP Discharge Temperature X
OPB Chamber Pressure X

LPOP Shaft Speed X ’
T s e

Table 1. Parameters that are inputs for the OPB chamber pressure and HPOT discharge
temperature RBFNN models.

Case Model Input Failure Start
Failed Type Time
| OPB Chamber Pressure PBP Discharge Pressure hard 3.0 secs
2 HPOT Discharge Temp OPB Chamber Pressure hard 3.0 secs
3 OPB Chamber Pressure FPB Chamber Pressure 100 psia/sec drift 1.0 secs
4 OPB Chamber Pressure FPB Chamber Pressure 50 psia/sec drift 1.0 secs
PBP Discharge Pressure hard 3.0 secs

Table 2. RBFNN input sensor failure cases for the OPB chamber pressure and HPOT discharge temperature

RBFNN models.

Output

Input Vector

Figure 1. Radial Basis Function Neural Network
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Figure 2. The centroid activation values for each centroid at time start + 3.8 seconds for test firing B1067 with
(a). all nominal input values and (b). with a single sensor failure.
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Figure 3. Examples of input sensor failures: (a). hard failure of the PBP discharge pressure and (b). drift failure
of the PBP chamber pressure. :
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Figure 4. The actual and predicted values for (a). the OPB chamber pressure RBFNN model and (b). the HPOT
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Figure 5. Response of the model validity indicators: (a). the maximum centroid activations and (b). the total
confidence values, for the OPB chamber pressure model on validation firing B1067. :
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Figure 6. Response of the model validity indicators: (a). the maximum centroid activations and (b). the total
confidence values, for the HPOT discharge temperature mode!l on validation firing B1067.
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Flgure‘ 7. Performance of OPB chamber pressure RBFNN model in the presence of a hard input sensor failure
for validation firing B1067: (a). actual and predicted values and (b). the difference between actual and predicted
values. '
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Figure 8. Response of model validity indicators to an input sensor failure in the OPB pressure RBFNN model:
(a). the maximum centroid activations and (b). the total confidence values. '
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Figure 9. Response of model validity indicators to two input sensor failures in the OPB chamber pressure
RBFNN model: (a). the maximum centroid activations and (b). the total confidence values.
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Figure 10. Individual dimensional confidence values for (a). input 1, (b). input 2, (c). input 3 and (d). input 4
of the OPB chamber pressure RBFNN model. Inputs 2 and 3 contained the simulated sensor failures.



